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Abstract - A neural network fomudation for modeling 
nonlinear microwave circuits is achieved in the most 
desirable format, i.e., continuous time-domain dynamic 
system format. The proposed dynamic neural network (DNN) 
model can be developed directly from input-output data 
without having to rely on internal details of the circuit. An 
algorithm is developed to train the model with time or 
frequency domain information. A circuit representation of 
the model is proposed such that the model eau be 
incorporated into circuit simulators for high-level design. 
Examples of dynamic-modeling of amplifiers, mixer and their 
use in system simulation are presented. 

I. INTRoDucnoN 

Artificial Neural Networks (ANN) have recently been 
recognized as a useful tool in RF and microwave CAD 
[I&?]. This paper addresses the applications of ANN fu 
nonlinear modeling and design, which could be an 
important area because of the increasing need for efficient 
CAD algorithms in high-level and large-scale nonlinear 
microwave design Several methods have been studied 
recently, such as the behavioral based neural network [3] 
and discrete recurrent neural network methods [4]. These 
works demonstrated neural networks as a useful alternative 
to the conventional behavioral 01 equivalent circuit based 
approaches [5][6]. The ANN approach has the potential to 
learn the nonlinear behavior from measured or simulated 
input-output data, avoiding otherwise manual effort of 
developing equivalent circuit topology. The universal 
approximation property of ANN provides a theoretical basis 
of representing the full analog behavior of the circuit with 
good accuracy. The evaluation of the ANN from input to 
output is very fast [3][4]. However, be&use of the specific 
formats of the existing methods, the potential of neural 
networks is still not fully realized due to difficulties in their 
incorporations in circuit simulators cu in establishing 
relations with large-signal measurement, or potential curse 
ofdimensionality in multi-tone simulations. 

The most ideal format to describe nonlinear dynamic 
models for circuit simulation is the continuous time-domain 
format, e.g., the popularly accepted dynamic current-charge 
format in many harmonic balance simulators. This format in 

theory best describes the timdamental essence of nonlinear 
behavior, and in practice is most flexible to tit most or 
nearly all needs of nonlinear microwave simulation, a task 
not yet achieved by the existing ANN techniques. In the 
neural network community, such type of networks has been 
studied, e.g., Hopefield network, recurrent network, etc. [7]. 
However they were mainly oriented for digital signal 
processing such as binary-based image processing, or system 
control with online correction signals from a physical system 
[7]. They are not directly suitable for microwave modeling. 
We must address continuous analog signals and our CAD 
method must be able to predict circuit behavior off-line. 

For the first time, an exactly continuous time-domain 
dynamic modeling method is formulated using neural 
networks for large-signal modeling of nonlinear 
microwave circuits. The model, called dynamic neural 
network (DNN) model, can be developed directly from 
input-output data without having to rely on internal details 
of the circuit. An algorithm is described to train the model 
with time or frequency domain information. A circuit 
representation is proposed such that the model can be 
incorporated into circuit simulators for high-level design. 
Examples of dynamic-modeling of amplifiers, mixer and 
their use in system simulation are presented. 

II. DYNAMIC NEURALNE~WORKMODELINGOF 
NONL~UFAR CWCUITS: FORMULA~ON AND DEVELOPMENT 

Let u and y be vectors of the input and the output 
signals of the nonlinear circuit respectively. The original 
circuit can be generally described in state equation form, 

$0 = r(.w. w 
-1:: 

UC!, = !u(X(t)~ 40) 
(I) =i- 

where x is a &vector of state variables and Ns is the 
number of states. For a circuit with many components, (1) 
could be a large set of nonlinear differential equations. For 
system level simulation including many circuits, such 
detailed state equations are mu large, computationally 
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expensive, or even unavailable at system level. Therefore, 
a simpler (reduced order) model approximating the same 
dynamic input-output relationships is needed. 

i?. Formulation of Dynamic Neural Network Model 

We propose a DNN fornndation of a reduced order 
representation of the original circuit. Let n be the order of 
the reduced model, n c N,.-Let vi be a n,-vector, i = 
1.2. . . ..n. and nv is the number of outputs of the model.,Let 
fANN represent a static multilayer perceptron neural 
network [I] with input neurons representing y, II, their 
derivatives d’y/dt’, i=I, 2, ,,., n-l, and d%/dt”, k=I.2. .,,, 
n-I; and the output neuron representing d”y/dt”, The 
proposed DNN model is 

~..,ftl=v,(l) (2) 

where u”(r) = d’u/dt’, and the input and output of the 
model is u(i) and y(!)= v,(r), respectively. 

The overall DNN model (2) is in a standardized format 
for typical nonlinear circuit simulators. For example, the 
l&-hand-side of the equation provides the charge (Q) or 
the capacitor part, and the right-hand-side provides the 
current (J) pat, which are the standard representation of 
nonlinear components in many harmonic balance 
simulators. The order n (or the number of hidden neurons 
in fANN) represents the effective order (or the degree of 
nonlinearity) of the original circuit that is visible from the 
input-output data. Therefore the size of the DNN reflects 
the internal property of the circuit rather than external 
signals, and as such the model does not suffer from curse 
of dimensional&y in multi-tone simulation. 

C. Model Training 

Our DNN model will represent a nonlinear microwave 
circuit only after we train it with data from the original 
circuit. We use training data in the form of inpur/output 
harmonic spectrums (obtainable by simulation or 
measurement). Let U(@, and Y(Y, be such input and 
output spectrums respectively, WE 0, where $2 is the set 
of spectrum frequencies. The training data is generated 
using a variety of input samples, leading to a set of data 
U,(o.#, Y,(r#. where m is the sample index, m=I, 2. _.., M, 
and Mis the total number of samples. 

Inifial Training: We first train the static AN74 part of the 
DNN model, i.e., fiNN, in time-domain directly or 
indirectly using time-domain information. Suppose A(4 t) 
represents the coefficients of Inverse Fourier Transform. 
The training data for/ANNcan be derived from, 

The initial training is illustrated in Fig. 1. This process 
is computationally efficient (without involving harmonic 
balance simulation) and can train the fANN from a random 
(unknown) start to an approximate solution. 

Fig. I. Initial mining to train the static multilayer perceptron 
part/lw in time-domain using spectrum data, where #A is the 
time derivative operator corresponding to (3). 

Final Training: The DNN model is iiuther refined using 
results from initial training as starting point. Final training 
is done in frequency-domain involving harmonic balance 
solutions of the DNN model. The error function for 
training is, 

(4) 

where im (0) and Y,,, (0) represent spectrum from model 
and mrh sample of training data, respectively. In aider to 
achieve the harmonic solutions fm(u) from the DNN 
model, we apply differentiation over the fA,v~ using the 
adjoint neural network method [8]. The resulting 
derivatives tit the Jacobian matrix of harmonic balance 
equations. 

D. Use of Trained DNN Model in Existing Simulators 

An exact circuit representation of our DNN can be 
derived as shown in Fig. 2. In this way the trained model 
can be incorporated into available simulation tools for 
high-level circuit and system design. 
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Fig. 2. Circuit representation ofthe DNN model. 

A. Amplifier Modeling 

This example shows the modeling ofnonlinear effects of 
an amplifier using the DNN technique. The amplifier 
internally has a 3-stage class B topology with 9 NPN 
hansistors modeled by Agilent-ADS nonliiear models 434 
and 437, and HP AT 41411[9]. 

We train OUT DNN to learn the input-output dynamics of 
the amplifier. We choose a hybrid Z-port formulation with 
u=[vhr io.JTas input, andy = [i,,,, v~.,]~ as output. 

The training data for the amplifier is gathered by 
exciting the circuit with a set of frequencies (0.95 - 
1.35GHz, step-size O.OKiHz), powers (-30 - -14 dBm, 
step-size 2 dBm), and load impedances (35 - 65 Ohms, 
step-size 10 Ohms). In initial training, Fourier transform 
sampling frequencies ranged from 47.5 to 67.5GHz. Final 
training is done with optimization over harmonic balance 
such that modeled harmonics match original harmonics. 
We trained the model in multiple ways using different 
number of hidden neumns and orders (n) of the model as 
shown in Table I. Testing is performed by comparing OUT 
model (implemented using Fig. 2) with original amplifier 
in ADS, with different set of signals neva used in training, 
i.e., different test frequencies (0.975 - 1.325GH2, step- 
size 0.05 GHz), powers (-29 - -15 dBm, step-size 2 dBm) 
and loads (40, 50, 60 Ohms). The model is compared with 
original circuit in both time and frequency domains, and 
excellent agreement is achieved. Fig. 3 shows examples of 
spectrum comparisons. 

TABLE I. AMPLIFIER: DNN ACCURACY 

Fig, 3. Amplifier output: Spectrum comparison between DNN 
(0) and original circuit (0) at load = 50 R. Excellent agreement 
is achieved even though such data were never used in training. 

B. Mixer Modeling 

This example illustrates DNN modeling of a mixer. The 
circuit internally is a Gilbert cell with 14 NPN transistors 
in ADS [9]. The dynamic input and output of the model is 
u=[vw, vLO, i,JT and y = [iw, v,~]? For example, the static 
multilayer perceptron part of the v,~ model is 

n YIF()(l) = fANN(“,F(“-‘~(t). Y,F(n.*)(t). .., YIF (I). v,‘“-“(r), 

“~~“-“(I),-. Vw(t),“Yro~“-l)(t), v,,‘“-“(t);‘.,v,,(t). 

i,F(“-“(t), i,Ffn.2’ (1). i,(t)) (5) 

The training data is gathered in such way: RF input 
frequency and power level changed from 11.7 to IZ.lGHz 
with step-size O.OSGHz and from -45 dBm to -35 dBm 
with step-size 2dBm respectively. LO signal is fixed at 
10.75 GHz and 10dBm. Load is pemubed by 10% at 
every harmonic in order to let the model learn load effects. 
The DNN is trained with different number of hidden 
neurcms and orders (n) as shown in Table II. Testing is 
done in ADS using input frequencies (11.725 - 
12.075GHz. step-size 0.05GHz) and power levels (-44, - 
42, -40, -38, -36 dBm). The agreement between model and 
ADS is achieved in time and frequency domains even 
though those test information was never seen in training. 
Fig. 4 illustrates examples of test in time-domain. 

TABLE II. MIXER: DNN ACCURACY 
FROM DIFFERENT TRAINING 
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Fig. 4. Mixer VIF output: Time-domain comparison between 
DNN (0) and original circuit (-). Good agreement is achieved 
even though such data were “ever used in training. 

C. Nonlinear Simulafion of DBS Receiver System 

To further confirm the validity of tbe proposed DNN, we 
also trained a DNN representing another amplifier (gain 
stage amplifier), and combined the three trained DNNs of 
mixer and amplifiers into a DBS deceiver sub-system [lo], 
where tbe amplifier trained in section A is used as output 
stage. The system solved by ADS harmonic balance 
simulation with original system in Fig. S(a) is compared with 
that using DNN models of amplifiers and mixer in Fig. 5(b). 
The overall system solution “sing DNNs matches that of the 
original system as shown in Fig. 6. 

LOP 

RFP 

DNN model DNN model 
of Gain Stage of output stage 

Amplifier hplitk 

@) 

Fig. 5. DBS receiver sub-system: (a) connected by original 
detailed equivalent circuit in ADS, @) connected by OUI DNNs 

We also performed Monte-Carlo analysis of the system 
under random sets of RF input frequencies and power 
levels. The statistics from the DNN based system 
simulation matches that from the original system, and the 
CPU for 1000 analyses of the system “sing DNN versus 
“sing original circuits is 3.94 vs. 6.52 hours, showing 
efftciency of the DNN based system simulation. The 
proposed DNN retains the advantages of neural network 

learning, speed, and accuracy as in existing techniques; 
and provides further advantages of being theoretically 
elegant and practically suitable for diverse needs of 
nonlinear microwave simulation, e.g., standardiied 
implementation in simulators, suitability for both time and 
frequency domain applications, and multi-tone simulations. 
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Fig. 6. DBS system output: Comparison between system 
solutions using DNN models (0) and ADS simulation of original 
system (-). Excellent agreement is achieved eve” though these 
nonlinear solutions were never used in training. 
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