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Abstract — A neural network formulation for modeling
pnonlinear microwave circuits Is achieved .in the most
desirable format, ie., continuous time-domain dynamic
system format. The proposed dynamic neural network (DNN)
model can be developed directly from input-output data
without having to rely on internal details of the circuit. An
algorithm is developed to train the model with time or
frequency domain information. A circuit representation of
the model is proposed such that the model can be
incorporated into cireuit simulators for high-level design.
Examples of dynamic-modeling of amplifiers, mixer and their
use in system simulation are presented.

L. INTRODUCTION

Artificial Neural Networks {ANN) have recently been
recognized as a useful tool in RF and microwave CAD
{1][2]). This paper addresses the applications of ANN to
nonlinear modeling and design, which could be an
important area because of the increasing need for efficient
CAD algorithms in high-level and large-scale nonlinear
microwave design. Several methods have been studied
recently, such as the behavioral based neural network [3]
and discrete recurrent neural network methods [4}. These
works demonstrated neural networks as a useful alternative
to the conventional behavioral or equivalent circuit based
approaches [5]{6). The ANN approach has the potential to

learn the nonlinear behavior from measured or simulated

input-output data, avoiding otherwise manual effort of
developing equivalent circuit topology. The universal
approximation property of ANN provides a theoretical basis
of representing the full analog behavior of the circuit with
good accuracy. The evaluation of the ANN from input to
output is very fast [3][4]. However, because of the specific
formats of the existing methods, the potential of neural
networks is still not fully realized due to difficulties in their
incorporations in circuit simulators or in establishing
relations with large-signal measurement, or potential curse
of dimensionality in multi-tone simulations.

The most ideal format to describe nonlinear dynamic
models for circuit simulation is the continuous time-domain
format, e.g., the popularly accepted dynamic current-charge
format in many harmonic balance simulators. This format in

theory best describes the fundamental essence of nonlinear
behavior, and in practice is most flexibie to fit most or
nearly ail needs of nonlinear microwave simulation, a task
not yet achieved by the existing ANN techniques. In the
neural network community, such type of networks has been
studied, e.g., Hopefield network, recurrent network, etc. [7].
However they were mainly oriented for digital signal
processing such as binary-based image processing, or system
control with online correction signals from a physical system
[7]. They are not directly suitable for microwave modeling.
We must address continuous analog signals and our CAD
method must be able to predict circuit behavior off-line.

For the first time, an exactly continuous time-domain
dynamic modeling method is formulated using neural
networks for large-signal modeling of nonlinear
microwave circuits. The model, called dynamic neural
network (DNN) model, can be developed directly from
input-output data without having to rely on internal details
of the circuit. An algorithm is described to train the model
with time or frequency domain information. A circuit
representation is proposed such that the model can be
incorporated into circuit simulators for high-level design.
Examples of dynamic-modeling of amplifiers, mixer and
their use in system simulation are presented.

II. DYNAMIC NEURAL NETWORK MODELING OF
NONLINEAR CIRCUITS: FORMULATION AND DEVELOPMENT

A. Original Circuit Dynamics

Let u and y be vectors of the input and the output
signals of the nonlinear circuit respectively. The original
circuit can be generally described in state equation form,

()= o x(1), u(1)
Y =w(x(), ut)

where x is a Ns-vector of state variables and Nj is the
number of states. For a circuit with many components, (1)
could be a large set of nonlinear differential equations. For
system level simulation including many circuits, such
detailed state equations are too large, computationally
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expensive, or even unavailable at system level. Therefore,
a simpler (reduced order) model approximating the same
dynamic input-output relationships is needed.

B. Formulation of Dynamic Neural Network Model

We propose a DNN formulation of a reduced order
representation of the original circuit. Let » be the order of
the reduced model, n < N;.-Let v; be a np-vector, | =
1,2,...,n, and n, is the number of outputs of the model. Let
Sfiww represent a static multilayer perceptron neural
network [1] with input neurons representing y, &, their
derivatives d'y/dt’, i=1, 2, ..., n-1, and d*w/dt®, k=12, ...,
n-1; and the output neuron representing d”y/dt”. The
proposed DNN model is

vi()=v,(1)

“’n-.i (f}zvn(f) (2)

(0= Fan (Vo ¥ oo v, (0, 87V 1), ugt)

where u™(f) = d*u/dt*, and the input and output of the
model is u(?) and p(t)=v (1) , respectively.

The overall DNN model (2) is in a standardized format
for typical nonlinear circuit simulators. For example, the
left-hand-side of the equation provides the charge (Q) or
the capacitor part, and the right-hand-side provides the
current (f) part, which are the standard representation of
nonlinear components in many harmonic balance
simulators. The order n (or the number of hidden neurons
in fim} represents the effective order {or the degree of
nonlinearity) of the original circuit that is visible from the
input-output data. Therefore the size of the DNN reflects
the internal property of the circuit rather than external
signals, and as such the model does not suffer from curse
of dimensionality in multi-tone simulation.

C. Model Training

Our DNN model will represent a nonlinear microwave
circuit only after we train it with data from the original
circuit. We use training data in the form of input/output
harmonic spectrums (obtainable by simulation or
measurement). Let Ufa), and ¥(ep} be such input and
output spectrums respectively, we Q, where & is the set
of spectrum frequencies. The training data is generated
using a variety of input samples, leading to a set of data
U.{a), ¥.(e), where m is the sample index, m=1, 2, ..., M,
and M is the total number of samples.

Initial Training: We first train the static ANN part of the
DNN model, i.e., fiw, in time-domain directly or
indirectly using time-domain information. Suppose A(@) ¢
represents the coefficients of Inverse Fourier Transform.
The training data for fyny can be derived from,

. afA(m,f)'Y 3)
yom Z—-——ari wl(®)

weld

The initial training is illustrated in Fig. 1. This process
is computationally efficient (without involving harmonic
balance simulation) and can train the f4y from a random
(unknown) start to an approximate solution.
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Fig. 1. Initial training to wrain the static multilayer perceptron
part fuy in time-domain using spectrum data, where d' 4 is the
time derivative operator corresponding to (3).
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Final Training: The DNN model is further refined using
results from initial training as starting point. Final training
is done in frequency-domain involving harmenic balance
solutions of the DNN model. The error function for
training is,

13 Sa@-tw)| @
2 m L

m=] we Q

where f’m (w) and Y, (@) represent spectrum from model
and m" sample of training data, respectively. In otder to
achieve the harmonic solutions ¥, (w) from the DNN
model, we apply differentiation over the fyyy using the
adjoint neural network method [8]. The resulting
derivatives fit the Jacobian matrix of harmonic balance
equations.

D. Use of Trained DNN Model in Existing Simulators

An exact circuit representation of cur DNN can be
derived as shown in Fig. 2. In this way the trained model
can be incorporated into available simulation tools for
high-level circuit and system design.

1102



Fig. 2. Circuit representation of the DNN model.

[i. DYNAMIC-MODELING EXAMPLES

A. Amplifier Modeling

This example shows the modeling of nonlinear effects of
an amplifier using the DNN technique, The amplifier
internally has a 3-stage class B topology with 9 NPN
transistors modeled by Agilent-ADS nonlinear models Q34
and Q37, and HP AT 41411[9].

We train our DNN to learn the input-output dynamics of
the amplifier. We choose a hybrid 2-port formulation with
u=[vy, iau,]Tas input, and y = [i;,, Vourl” a8 output.

The training data for the amplifier is gathered by
exciting the circuit with a set of frequencies (0.95 ~
1.35GHz, step-size 0.05GHz), powers (-30 ~ -14 dBm,
step-size 2 dBm}, and load impedances (35 ~ 65 Ohms,
step-size 10 Ohms). In initial training, Fourier transform
sampling frequencies ranged from 47.5 to 67.5GHz. Final
training is done with optimization over harmonic balance
such that modeled harmonics match original harmonics.
We trained the model in multiple ways using different
number of hidden neurons and orders (#) of the mode! as
shown in Table 1. Testing is performed by comparing our
model (implemented using Fig. 2) with original amplifier
in ADS, with different set of signals never used in training,
ie., different test frequencies (0.975 ~ 1.325GHz, step-
size 0.05 GHz), powers (-29 ~ -15 dBm, step-size 2 dBm)
and loads (40, 50, 60 Ohms). The model is compared with
original circuit in both time and frequency domains, and
excellent agreement is achieved. Fig. 3 shows examples of
spectrum comparisons.

TABLE [. AMPLIFIER: DNN ACCURACY

FROM DIFFERENT TRAINING
No. of Hidden | yesting Crdern | Testing
Neurons In Error In Error
Training Training
A0 4.2E-3 2 5.3E-3
50 2 9E-3 3 2.9E-3
60 3.6E-3 4 1.5E-2
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Fig. 3. Amplifier output: Spectrum comparison between DNN

(@) and original circuit (O} at load = 50 (2, Excellent agreement
is achieved even though such data were never used in training.

B. Mixer Modeling

This example illustrates DNN modeling of a mixer. The
circuit internally is & Gilbert cell with 14 NPN transistors
in ADS [9]. The dynamic input and output of the model is
u=[var, vi0, ir]” and » = {irgy viel. For example, the static
multilayer perceptron part of the v;» model is

. .2 y)

vie™ )= L e Qv P Wi Q™ 1),
22 ”) 9)

v ™20, v 0™ v ™2 W 0 (),

i P 01" @), i 1) ©)

The training data is gathered in such way: RF input
frequency and power level changed from 11.7 to 12.1GHz
with step-size 0.05GHz and from -45 dBm to -35 dBm
with step-size 2dBm respectively. LO signal is fixed at
10.75 GHz and 10dBm. Load is perturbed by 10% at
every harmonic in order to let the model learn load effects.
The DNN is trained with different number of hidden
neurons and orders (») as shown in Table II. Testing is
done in ADS using input frequencies (11.725 ~
12.075GHz, step-size 0.05GHz) and power levels (-44, -
42, -40, -38, -36 dBm). The agreement between model and
ADS is achieved in time and frequency domains even
though those test information was never se¢n in training.
Fig. 4 illustrates examples of test in time-domain.

TABLE II. MIXER: DNN ACCURACY

FROM DIFFERENT TRAINING
No. of Hidden Testing Ordern Testing
Neurons In Error in Error
Training Training
45 8.7E-4 2 2.7E-3
55 4.6E-4 3 1.4E-3
65 6.5E4 4 4.6E4
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Fig. 4. Mixer Vi output: Time-domain comparison between
DNN (o) and original circuit (—). Good agreement is achieved
even though such data were never used in training.

C. Nonlinear Simulation of DBS Receiver System

To further confirm the validity of the proposed DNN, we
also trained a DNN representing znother amplifier (gain
stage amplifier), and combined the three trained DNNs of
mixer and amplifiers into a DBS receiver sub-system [10],
where the amplifier trained in section A is used as cutput
stage. The system solved by ADS harmonic balance
simulation with original system in Fig. 5(a) is compared with
that using DNN models of amplifiers and mixer in Fig. 5(b).
The overall system solution using DNNs matches that of the
original system as shown in Fig. 6.

LoPorf b=+ , fﬁ—ﬂj
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o DNN model DNNmodel || DNN model
of Mixer of Gain Stage || of Output Stage
@VRF Amplifier Amplifier
&
Fig. 5. DBS receiver sub-system: () connected by original

detailed equivalent circuit in ADS, (b) connected by our DNNs

We also performed Monte-Carlo analysis of the system
under random sets of RF input frequencies and power
levels. The statistics from the DNN based system
simulation matches that from the original system, and the
CPU for 1000 analyses of the system using DNN versus
using original circuits is 3.94 vs. 6.52 hours, showing
efficiency of the DNN based system simulation. The
proposed DNN retains the advantages of neural network

learning, speed, and accuracy as in existing techniques;
and provides further advantages of being theoretically
clegant and practically suitable for diverse needs of
nonlinear microwave simulation, e.p., standardized
implementation in simulators, suitability for both time and
frequency domain applications, and multi-tone simulations.
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Fig. 6. DBS system output: Comparison between system
solutions using DNN models (0) and ADS simulation of original
system (—). Excellent agreement is achieved even though these
nonlinear solutions were never used in training,
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